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Abstract
We consider a Hamiltonian with N point interactions in R

d , d = 2, 3, all with
the same coupling constant, placed at vertices of an equilateral polygonPN . It is
shown that the ground-state energy is locally maximized by a regular polygon.
The question whether the maximum is global is reduced to an interesting
geometric problem.

PACS numbers: 02.40.Ft, 03.65.Ge

1. Introduction

Questions about geometrical configurations which lead to an extremal value of a spectral
quantity represent a classical topic in mathematical physics; recall the Faber–Krahn inequality
[Fa, Kr], the PPW-conjecture proved by Ashbaugh and Benguria [AB], and numerous other
examples. A particular place in this list is occupied by the Dirichlet problem for the Laplacian
in annular strips and their higher-dimensional analogues where the principal eigenvalue is
typically maximized by a circular shape [EHL].

The reason behind the last named result is an effective attraction coming from the
curvature. This effect is robust and can be manifested in situations where the confinement
to the vicinity of a certain geometric object is much weaker than boundary conditions, being
realized, for instance, by a potential or even by a mere family of point interactions. An
illustration is provided by ‘polymer’ models [AGHH], i.e. infinite equidistant arrays of point
interactions: if such a polymer is curved but asymptotically straight in a suitable sense, it has
a non-empty discrete spectrum the properties of which depend substantially on the geometry
of the array [Ex1, EN].

It is natural to ask whether the mentioned results about Dirichlet annuli have an analogue
in the situation when the point interactions are arranged along a closed curve of a fixed length.

0305-4470/05/224795+08$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4795

http://dx.doi.org/10.1088/0305-4470/38/22/004
http://stacks.iop.org/ja/38/4795


4796 P Exner

In this paper we address this isoperimetric problem and show that the ‘circular’ shape, namely
a regular polygon, is a local maximizer for the lowest eigenvalue.

On the other hand, the question about the global uniqueness of this maximizer is left open.
As we shall see in section 3, the problem can be reduced to verification of a simple property
for some families of polygon diagonals. At a glance it seems to be something which must be
known since Euclid’s Elementa, or at least for quite a long time. However, this impression
is wrong; it is found nowhere in the literature unless I looked the wrong direction and asked
wrong people. And as any problem which allows a statement in elementary geometric terms,
it has a certain independent appeal.

We will formulate the problem and state our main result, theorem 2.1, in the next section.
It will then be proved in sections 3 and 4, while the last two sections are devoted to the global
uniqueness question and possible extensions of the result.

2. The main result

Let PN ⊂ R
d , d = 2, 3, be a polygon which is for the present purpose convenient to identify

with an ordered set of its vertices, PN = {y1, . . . , yN }; if the vertex indices exceed this range
they are understood mod N . We suppose that PN is equilateral, |yi+1 − yi | = � for a fixed
� > 0 and any i. By P̃N we denote a regular polygon of edge length �, which means planar
(this is trivial if d = 2) with vertices lying on a circle of radius �

(
2 sin π

N

)−1
.

The object of our interest is the Hamiltonian −�α,PN
in L2(Rd) with N point interactions,

all of the same coupling constant α, placed at the vertices of PN . We suppose that this operator
has a non-empty discrete spectrum,

ε1 ≡ ε1(α,PN) := inf σ(−�α,PN
) < 0,

which is satisfied for any α ∈ R if d = 2, while in the case d = 3 it is true below a certain
critical value of α—cf [AGHH, section II.1].

Theorem 2.1. Under the stated conditions, ε1(α,PN) is for fixed α and � locally sharply
maximized by a regular polygon, PN = P̃N .

Let us remark that speaking about uniqueness of the maximizer, we have of course in
mind the family of regular polynomials related mutually by Euclidean transformations of R

d .

3. A geometric reformulation

As the first step to prove theorem 2.1 we want to show that the task can be reduced to a
geometric problem. Using the standard notation, k = iκ with κ > 0, we find the eigenvalues
−κ2 solving the following spectral condition,

det �k = 0 with (�k)ij := (α − ξk)δij − (1 − δij )g
k
ij ,

where gk
ij := Gk(yi − yj ), or equivalently

gk
ij =




1

2π
K0(κ|yi − yj |) d = 2

e−κ|yi−yj |

4π |yi − yj | d = 3,

(3.1)
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and the regularized Green’s function at the interaction site is

ξk =




− 1

2π

(
ln

κ

2
+ γE

)
d = 2

− κ

4π
d = 3.

The matrix �iκ has N eigenvalues counting multiplicity which are decreasing in (−∞, 0) as
functions of −κ—see [KL] and recall that they are real-analytic and non-constant in view of
their known asymptotic behaviour [AGHH]. The quantity in question, ε1(α,PN), corresponds
to the point κ where the lowest of these eigenvalues vanishes. Consequently, we have to check
that

min σ
(
�iκ̃1

)
< min σ

(
�̃iκ̃1

)
(3.2)

holds locally for PN �= P̃N , where −κ̃2
1 = ε1(α, P̃N).

Next we note that the lowest eigenvalue of �̃iκ̃1 corresponds to the eigenvector φ̃1 =
N−1/2(1, . . . , 1). Indeed, by [AGHH] there is a bijective correspondence between an
eigenfunction c = (c1, . . . , cN) of �iκ at the point, where the corresponding eigenvalue equals
zero, and the corresponding eigenfunction of −�α,PN

is given by c ↔ ∑N
j=1 cjGiκ(· − yj ),

up to a normalization. Again by [AGHH], the principal eigenvalue of −�α,PN
is simple, so

it has to be associated with a one-dimensional representation of the corresponding discrete
symmetry group of P̃N ; it follows that c1 = · · · = cN . Hence

min σ
(
�̃iκ̃1

) = (
φ̃1, �̃iκ̃1 φ̃1

) = α − ξ iκ̃1 − 2

N

∑
i<j

g̃
iκ̃1
ij . (3.3)

On the other hand, for the lhs of (3.2) we have a variational estimate

min σ
(
�iκ̃1

)
�
(
φ̃1, �iκ̃1 φ̃1

) = α − ξ iκ̃1 − 2

N

∑
i<j

g
iκ̃1
ij ,

and therefore it is sufficient to check that the inequality∑
i<j

Giκ(yi − yj ) >
∑
i<j

Giκ(ỹi − ỹj ) (3.4)

holds for all κ > 0 and PN �= P̃N in the vicinity of the regular polygon P̃N .
For brevity we introduce the symbol �ij for the diagonal length |yi−yj | and �̃ij := |ỹi−ỹj |.

We define the function F : (R+)
N(N−3)/2 → R by

F({�ij }) :=
[N/2]∑
m=2

∑
|i−j |=m

[Giκ(�ij ) − Giκ(�̃ij )].

Note that m = 1 does not contribute due to the assumed equilaterality of PN . Our aim is to
show that F({�ij }) > 0 except if {�ij } = {�̃ij }. We use the fact that the function Giκ(·) is
convex for any fixed κ > 0 and d = 2, 3 as can be seen from cf (3.1); this yields the inequality

F({�ij }) �
[N/2]∑
m=2

νm


Giκ


 1

νm

∑
|i−j |=m

�ij


 − Giκ(�̃1,1+m)


 ,

where νn is the number of appropriate diagonals,

νm :=
{

N m = 1, . . . ,
[

1
2 (N − 1)

]
1
2N m = 1

2N for N even.
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At the same time, Giκ(·) is monotonically decreasing in (0,∞), so the sought claim would
follow if we demonstrate the inequality

�̃1,m+1 � 1

νn

∑
|i−j |=m

�ij ,

and show that it is sharp for at least one value of m if PN �= P̃N .
Thus we have managed to reformulate our problem in purely geometric terms. Since

the corresponding property—to be checked in the following—may be of independent interest,
we will state it more generally, without dimensional restrictions. Let PN be an equilateral
polygon in R

d , d � 2. Given a fixed integer m = 2, . . . ,
[

1
2N

]
we denote by Dm the sum of

lengths of all m-diagonals, i.e. the diagonals jumping over m vertices.

(Pm) The quantity Dm is, in the set of equilateral polygons PN ⊂ R
d with a fixed edge

length � > 0, uniquely maximized by D̃m referring to the (family of) regular polygon(s)
P̃N .

4. A local maximizer

Our next goal is to demonstrate the following claim which yields in the particular cases
d = 2, 3 our main result, theorem 2.1.

Theorem 4.1. The property (Pm) holds locally for any m = 2, . . . ,
[

1
2N

]
.

Proof. We have to find, for instance, local maxima of the function

fm : fm(y1, . . . , yN) = 1

N

N∑
i=1

|yi − yi+m|

under the constraints gi(y1, . . . , yn) = 0, where

gi(y1, . . . , yn) := � − |yi − yi+1|, i = 1, . . . , N.

The number of independent variables is in fact (N − 2)(d − 1)− 1 because 2d − 1 parameters
are related to Euclidean transformations and can be fixed. We put

Km(y1, . . . , yN) := fm(y1, . . . , yN) +
N∑

r=1

λrgr(y1, . . . , yn) (4.1)

and compute the derivatives ∇jKm(y1, . . . , yN) which are equal to

1

N

{
yj − yj+m

|yj − yj+m| +
yj − yj−m

|yj − yj−m|
}

− λj

yj − yj+1

�
− λj−1

yj − yj−1

�
.

We want to show that these expressions vanish for a regular polygon. Let us introduce
a parametrization for any planar equilateral polygon. Without loss of generality we may
suppose that it lies in the plane of the first two axes. The other coordinates are then zero and
we neglect them writing

yj = �

(
j−1∑
n=0

cos

(
n∑

i=1

βi − ϕ

)
,

j−1∑
n=0

sin

(
n∑

i=1

βi − ϕ

))
, (4.2)

where ϕ ∈ R is a free parameter and βi is the ‘bending angle’ at the ith vertex (modulo 2π );
the family of these angles satisfies naturally the condition

N∑
i=1

βi = 2πw (4.3)
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for some w ∈ Z. Choosing ϕ̃ = π
N

and β̃i = 2π i
N

, we get in particular

ỹ±m = �

(
±

m−1∑
n=0

cos
π

N
(2n + 1),

m−1∑
n=0

sin
π

N
(2n + 1)

)
.

Then we have

|ỹj − ỹj±m| = �


(m−1∑

n=0

cos
π

N
(2n + 1)

)2

+

(
m−1∑
n=0

sin
π

N
(2n + 1)

)2

 =: �ϒm,

and consequently, ∇jKm(ỹ1, . . . , ỹN ) = 0 holds for j = 1, . . . , N if we choose all the
Lagrange multipliers in (4.1) equal to

λ = σm

Nϒm

with σm :=
∑m−1

n=0 sin π
N

(2n + 1)

sin π
N

= sin2 πm
N

sin2 π
N

. (4.4)

The second partial derivatives, ∇k,r∇j,sKm(y1, . . . , yN), are computed to be

1

N

{
δkj − δk,j+m

|yj − yj+m| δrs − (yj − yj+m)r(yj − yj+m)s(δkj − δk,j+m)

|yj − yj+m|3 +
δkj − δk,j−m

|yj − yj−m| δrs

− (yj − yj−m)r(yj − yj−m)s(δkj − δk,j−m)

|yj − yj−m|3 +
λ

�
(δk,j+m + δk,j−m − 2δkj )δrs

}
.

This allows us to evaluate the Hessian at the stationary point. After a long but straightforward
calculation we arrive at the expression∑
k,j,r,s

∇k,r∇j,sKm(ỹ1, . . . , ỹN )ξk,rξj,s

= 1

N�ϒm

N∑
j=1

{
|ξj − ξj+m|2 − (ξj − ξj+m, ỹj − ỹj+m)2

|ỹj − ỹj+m|2 − σm|ξj − ξj+1|2
}

.

(4.5)

We observe that the form depends on vector differences only, so it is invariant with respect to
Euclidean transformations. Furthermore, the sum of the first two terms in the bracket on the
rhs of (4.5) is non-negative by Schwarz inequality.

Since the second term is non-positive, it will be sufficient to establish negative definiteness
of the quadratic form

ξ 	→ Sm[ξ ] :=
∑

j

{|ξj − ξj+m|2 − σm|ξj − ξj+1|2} (4.6)

on R
Nd . Moreover, it is enough to consider here the case d = 1 only because Sm is a sum of

its ‘component’ forms. We observe that the matrices corresponding to the two parts of (4.6)
can be simultaneously diagonalized; the corresponding eigenfunctions are

{(sin
cos

)
(µrj)

}N

j=1,

where µr = 2πr
N

, r = 0, 1, . . . , m − 1. Taking the corresponding eigenvalues we see that it is
necessary to establish the inequalities

4
{

sin2 πmr

N
− σm sin2 πr

N

}
< 0 (4.7)

for m = 2, . . . ,
[

1
2N

]
and r = 2, . . . , m − 1. We left out here the case r = 1 when the lhs

of (4.7) vanishes. At the same time, however, the above explicit form of the eigenfunctions
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shows that the corresponding ξj −ξj+m are in this case proportional to ỹj − ỹj+m, so the second
term on the rhs of (4.5) is negative unless ξ = 0.

Using expression (4.4) for σm we can rewrite the condition (4.7) in terms of Chebyshev
polynomials of the second kind as

Um−1

(
cos

π

N

)
>

∣∣∣Um−1

(
cos

πr

N

)∣∣∣ , (4.8)

which can be checked using properties of these polynomials [AS, chapter 22]. One can do it
also directly, because (4.8) is equivalent to

sin
πm

N
sin

πr

N
>

∣∣∣sin
π

N
sin

πmr

N

∣∣∣ , 2 � r < m �
[
N

2

]
.

We have sin x sin(η2/x) � sin η for a fixed η ∈ (
0, 1

2π
)

and 2η2/π � x � 1
2π , and moreover,

this inequality is sharp if x �= η, hence the desired assertion follows from the inequality
sin2 x − sin π

N
sin Nx2

π
� 0 valid for x ∈ (

0, 1
2π

)
. This concludes the proof of theorem 4.1,

and by that also of theorem 2.1. �

5. Global properties

The question whether the maximizer represented by regular polygons is global at the same
time is more difficult. By the argument of section 3 it can be reduced again to a purely
geometric problem, namely that about validity of the following claim.

Conjecture 5.1. The property (Pm) holds globally for any m = 2, . . . ,
[

1
2N

]
.

Let us look at the problem in more detail in the particular case of planar polygons, d = 2. We
employ a parametrization analogous to (4.2): for a fixed i we identify yi with the origin and
set for simplicity ϕ = 0, i.e.

yi+m = �


1 +

m−1∑
n=1

cos
n∑

j=1

βj+i ,

m−1∑
n=1

sin
n∑

j=1

βj+i


 .

In addition to the angular condition (4.3) we require naturally also that yi = yi+N , or in other
words

1 +
N−1∑
n=1

cos
n∑

j=1

βj+i =
N−1∑
n=1

sin
n∑

j=1

βj+i = 0 (5.1)

for any i = 1, . . . , N . The mean length of all m-diagonals is easily found,

Mm = �

N

N∑
i=1




1 +

m−1∑
n=1

cos
n∑

j=1

βj+i




2

+


m−1∑

n=1

sin
n∑

j=1

βj+i




2



1/2

,

or alternatively

Mm = �

N

N∑
i=1


m + 2

m−1∑
n=1

n∑
r=1

cos
n∑

j=r

βj+i




1/2

. (5.2)

It allows us to prove the claim in the simplest nontrivial case.

Proposition 5.2. The property (P2) holds globally if d = 2.
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Proof. By (5.2) the mean length of the 2-diagonals equals

M2 =
√

2�

N

N∑
i=1

(1 + cos βi)
1/2 = 2�

N

N∑
i=1

cos
βi

2
,

note that cos βi

2 > 0 because βi ∈ (−π, π). Using now convexity of the function u 	→ −cos u
2

in (−π, π) together with the condition (4.3) we find

−
N∑

i=1

cos
βi

2
� −N cos

(
N∑

i=1

βi

2

)
= −N cos

π

N
,

and therefore M2 � 2� cos π
N

= M̃2. Moreover, since the said function is strictly convex, the
inequality is sharp unless all the βi are the same. �

For m � 3 the situation is more complicated and one has to take into account also the
condition (5.1); for the moment the problems remain open.

6. Possible extensions

Apart from proving conjecture 5.1 and by that the global uniqueness of the maximizer, the
present problem offers various other extensions. One can ask, for instance, what will be the
maximizer when we replace the equilaterality by a prescribed ordered N-tuple of polygon
lengths {�j } and/or coupling constants {αj }. In both cases the task becomes more difficult
because we lose the ground-state symmetry which yielded relation (3.3) and consequently the
geometric reformulation based on inequality (3.4).

One can also attempt to extend the result to a point interaction family of point interactions
in R

3 placed on a closed surface. In this case, however, there is no unique counterpart to the
equilaterality and one has to decide first what the ‘basic cell’ of such a polyhedron surface
should be. Another extension of our isoperimetric problem concerns ‘continuous’ versions
of the present situation, i.e. Schrödinger operators with singular interactions supported by
closed curves or surfaces—cf [EI, Ex2] and references therein—or with a regular potential
well extended along a closed curve.
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pp 47–53

[EI] Exner P and Ichinose T 2001 Geometrically induced spectrum in curved leaky wires J. Phys. A: Math. Gen.
34 1439–50



4802 P Exner
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